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A b s t r a c t 

We present algorithms that allow an intelligent
system to dynamically convert between two representations
of spatial occupancy, namely, certainty grids and object
boundary curves.  These algorithms can be used to
accomplish many real-time tasks of a mobile robot such as
mapping, navigation, object recognition, and robot
localization.  For conversion from certainty grid to object
boundaries, an edge linking algorithm [8] is appropriately
modified.  Certainty grid ‘images’ are transformed into a set
of object boundary curves.  The latter are expressed as
oriented piecewise linear segments.  Image processing
techniques, such as edge detection, thinning, curve tracing,
and linear approximation are employed with various
modifications.  Modifications include a new method for
linear curve approximation that is simple, accurate, and
efficient.  This method monitors chord and arc length and
its excellent performance is demonstrated against similar
algorithms.  The certainty grid to object boundary algorithm
is tested against simulated noisy certainty grid maps.  An
algorithm to do the inverse operation, namely, to convert
object boundary curves to an occupancy grid, is also
presented.

1 I n t r o d u c t i o n 
An intelligent system contains world model

representations of entities necessary for the accomplishment
of its goals.  For example, a mobile robot must represent
(implicitly or explicitly) the obstacles in its environment.
Researchers have often chosen a single type of
representation for all entities.  We argue the utility of
multiple representations of the same entity.  The main
objection to having multiple representations of the same
entity in a real-time system is the problem of maintaining
consistency between the representations.  This problem is
avoided when real-time conversion algorithms are defined
and used.  We present two such algorithms in this paper.

With processor and memory costs continuing to fall
and the availability of parallel bus architectures,
maintaining multiple representation types in real-time

intelligent systems is becoming more feasible.  The system
benefits by being able to choose the representation most
appropriate for the accomplishment of each task.

Two useful and complementary map representations
are certainty grids [7] and object boundary curves.  They are
particularly useful for mobile robot control.  For example,
vectors normal to an object boundary would be difficult to
get from a certainty grid, but relatively easy to obtain from
an object boundary curve.  Spatial occupancy information is
gotten easily from certainty grids but not as easily from
object boundary curves.  Additionally, representing spatial
occupancy in the form of object boundary curves is
important for the detection of higher level features such as
corners, curves, and lines.  As a result, high level geometric
features can be more easily computed, perceived, and
updated and, for example, can be used by the mobile robot
to reorient itself or to recognize objects.  It is relatively easy
to build and maintain a certainty grid which makes it a good
local map.  However, a certainty grid representation for a
global map may require a forbidding amount of storage
space, whereas, an object boundary curve representation is
more compact without sacrificing accuracy or utility.

Since we seek to maintain these two particular
representations of a dynamic occupancy map in real-time
intelligent systems, we need real-time map conversion
algorithms. We have developed two algorithms to do this
real-time conversion, namely, certainty grid to object
boundary (CGOB) and object boundary to occupancy grid
(OBOG).  Our claim of real-time performance is two-fold,
1) both algorithms are O(n) where n is the number of pixels
in the object boundary curves and 2) if the image processing
segments of the algorithms are done on each pixel in
parallel, the CGOB can execute in roughly five seconds or
less for a standard sized image (i.e., 2562 pixels) on
standard computing hardware.  The OBOG algorithm
executes much faster than CGOB.  These numbers have
been determined experimentally. Significant speed ups can
be made on this prototype code.

The CGOB algorithm we have developed has been
tested against simulated certainty grids of various types
corrupted by blurring and speckle noise (figure 6).  The



object boundary curve points encode (in the ordering of
those points) which side of the curve is occupied.  The
CGOB algorithm concludes with a piecewise linear curve
approximation algorithm.  The popular split and merge
approach [6, 5] is known to be inefficient and several
attempts to improve its efficiency come with an increase in
complexity [8, 11].  We have developed a new approach
that is accurate, simple, and efficient.  We compare this new
approach to some others in the literature.

The OBOG algorithm has been tested against object
boundary curves of various types (figures 9 and 10).  This
algorithm is significantly simpler than the CGOB algorithm
and can also be computed in parallel on a pixel processor.

2 M u l t i - l e v e l  r e p r e s e n t a t i o n s  i n  a n 
i n t e l l i g e n t  s y s t e m 

Hierarchical intelligent control, as described in [1],
specifies a real-time, multi-level interaction of prediction
and error formation.  The certainty grid representation
allows prediction of points (low level), whereas the object
boundary representation allows prediction of lines and
shapes (higher level).  The CGOB and OBOG algorithms
will allow both representations to simultaneously exist and
be updated in a real-time hierarchical intelligent control
system in a manner illustrated in figure 1.  For example,
robot range and position data can be used to update a
certainty grid (a ‘point’ type of representation).  Using
CGOB, we convert this map to a set of object boundaries
which can be considered to be a ‘higher’ level
representation since we have now aggregated point features
into linear features.  These object boundary curves are then
stored in the world model and can be used, for example, to
do object recognition.  Object recognition can be used to
generate a more precise boundary map and OBOG can be
used to create occupancy grid estimates.  Knowledge of
commanded motions can also contribute to better estimates.

3 T h e  c e r t a i n t y  g r i d  t o  o b j e c t 
b o u n d a r y  a l g o r i t h m 

We now describe the CGOB algorithm:
1) Create a raw edge grid using two orthogonal 5x5 gradient

operators on a noisy certainty grid.
2) Threshold and thin the raw edge grid and use this result to

compute arrays of 'predecessors' and 'successors' .
3) Group contiguous cells in the thinned edge grid, constituting

contiguous edge cells.
4) Do local Gaussian smoothing on each group of points (to filter

quantization noise).
5) Approximate the smoothed boundary points with contiguous

line segments by monitoring change in chord length and path
length.

3 . 1 E d g e  de t e c t i o n 
We used two 5x5 orthogonal stochastic gradient

operators [6] for computing the gradient.  3x3 operators
didn’t produce smooth thinned edges, so 5x5 operators were
required.  Stochastic gradient operators have the advantage
of performance tailored to the expected signal to noise
characteristics of the raw certainty grid.  This signal to noise
ratio (SNR) needs to be computed from a representative
noisy certainty grid in order to be accurate.  We performed
our simulations with a somewhat low SNR of one.
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Figure 1: Sensory processing and world modeling components of an intelligent system showing
functionality of map conversion algorithms.
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3 . 2 T h r e s h o l d i n g  a n d  t h i n n i n g 
After edge detection, a thresholding operation is used

to eliminate spurious edges.  Our choice of the stochastic
gradient operator made the choice of this threshold value
less critical, since the stochastic gradient eliminates much of
the noise.

The thinning step seeks to find the cells associated
with the true edge and eliminate all others.  The orientation
and magnitude of each cell is examined.  We classify the
edge orientation as lying within one of four like-shaded
regions in figure 2.  The non-maximum suppression
algorithm is employed for thinning and requires the
following for a cell to be an edge:
1) the cell magnitude is a local maxima with respect to its two

neighbors orthogonal to the edge orientation (see figure 2).
2) the difference in edge orientation of this cell with its two

neighbors is less than threshold (π/3 worked well with our
simulations)

If the cell passes both the threshold and the thinning test, it
is stored in the thinned edge grid and the two neighbors are
excluded from consideration as potential edge cells.

3 . 3 C u r v e  li n k i n g 
Now that the thinned edge grid is formed, we must

order these cells into sets of ordered lists which describe the
curves (closed, open, and forks) that we expect to see.  We
followed Nevatia & Babu by forming successor and
predecessor grids that contain the chosen successor and
predecessor for each cell.  These predecessors and
successors are then used to get linked lists of curves
representing the object boundaries.

3 . 3 . 1 P r e d e c e s s o r s  a n d  su c c e s s o r s 
The predecessors and successors for each cell in the

thinned edge grid are chosen as follows:
1) Determine within which one of eight regions (illustrated in

figure 2) the edge orientation lies.  Edge direction is defined
π/2 counterclockwise from the edge gradient direction.  This
means that occupied space is always to the right if moving
along the edge in the edge direction.

2) With this information, define potential successors and
predecessors (three each maximum) based on whether those
potential cells are in the thinned edge grid.

3) If there are predecessors, record that fact.  Any more
information on predecessors is not necessary.

4) If there is only one successor (defined in the edge direction),
just choose it.

5) If there are exactly two successors, and
a) if the potential successor cells are not 4-neighbors, choose

one with the greatest magnitude as the successor and store
other as a fork.

b) if the potential successor cells are not 4-neighbors, choose
one as a potential fork only if its edge orientation differs by
more than threshold (we used π/3).  Otherwise, choose the
nearest of the two as successor (Euclidean distance).

6) If there are exactly three successors,
a) the one with maximum difference in edge orientation is

chosen as a potential fork.
b) successor is the closest one by Euclidean distance.

Optimum paths are not sought after as in dynamic
programming techniques [2, 6], because of the increase of
computation required.

The edge direction is defined as π / 2
counterclockwise from the edge gradient direction and the
edge direction defines the successor direction.  Therefore,
occupied space is on the right if one follows successors.

Using a 5x5 edge approximator, features of size five
or smaller (depending on noise levels) will be missed or
misinterpreted.  This is probably why we were never able to
create forks in our simulations.

3 . 3 . 2 C u r v e  g e n e r a t i o n 
Now that we have grids of successors, predecessors,

and forks, we need to exploit these grids to obtain the
ordered lists that constitute the object boundary curves in
the certainty grid.  Curve generation requires two serial
passes through the grid.
1) Look for cells with a successor and no predecessor and store

them as starters of open curves.  At the same time, look for
fork cells.

2) Start tracing at each starter cell (excluding fork cells).
Eliminate the starter cell from further consideration.  If the
current cell has a successor and this potential successor cell has
not been eliminated, store the successor into the ordered list.
Delete each traced edge cell in the thinned edge map.

3) Start tracing at each fork only if the successor of the fork point
successor has not been eliminated.  Eliminate cells in fork
curves.

4) Trace closed curves starting at the first cell encountered that is
‘alive’.  Eliminate cells from  thinned edge grid as they are
traced.  Continue cycling through the entire thinned edge map.

3 . 4 P i e c e w i s e  li n e a r  c u r v e 
a p p r o x i m a t i o n 
The map is now represented as sets of contiguous

grid cells.  Each set defines an object boundary curve.  This
is already a significant reduction in data storage from the
certainty grid.  However, further reductions can usually be
made by approximating these curves with even fewer
points.  These points then represent the approximation to
the object boundary.

One can, of course, use more sophisticated methods
of fitting a curve to the set of obstacle boundary points
using splines and higher order polynomials, but line
segments have the advantage of simplicity.  We avoided
optimal linear approximations [9] since they a
computationally much more expensive [10].  The trade-off
of optimality for simplicity and speed we felt was
reasonable.

Each object boundary is a list of contiguous cells
constituting a curve in two dimensions.  We wish to obtain
a set of points that approximate that curve according to
some criterion of fitness.  One algorithm that does this is
called 'split and merge' [3, 5, 6].  It uses a minimum mean
squared error criterion.  However, the split and merge
method has several weaknesses,
1) It is inefficient since it may require forming approximation

errors from the same points on the curve up to ( )( ) /n n− −2 1 2
times for an n point curve [8].



2) Errors can occur in the choice of the initial break point [11].
3) Attempts to eliminate these problems come with a substantial

increase in complexity [11, 8].

The strengths of the split and merge algorithm are:
1) Simplicity.
2) It is controlled by a single, physically meaningful parameter

(maximum deviation).
3) It generates a sparse set of points that well approximate the

original curve (see figure 3).
4) The approximations are stable (according to the criteria defined

in [4]).
5) It preserves symmetry.

We sought an algorithm that is efficient and
minimizes mean squared error, but which preserves the
strengths of the split and merge approach.  Such
requirements are largely satisfied by monitoring the
relationship of chord length and arc length along the curve.

Here is the chord and arc length method for
piecewise linear curve approximation:
1) Determine whether the curve is open or closed.
2) Do local Gaussian smoothing on the raw data to reduce

quantization error.
3) Starting anywhere on the closed curve (at the first point on the

open curve), compute chord length, C, and arc length, S, for
each successive point and if 1 2 2 2S C−  is greater than the
maximum deviation parameter, declare the previous point to be
dominant.

4) Merge points by testing if approximating points can be
eliminated without exceeding the threshold on deviation.

5) Compute a (parameterized) least squares line to the points on
the curve between and including the last two dominant points.

6) Find the point on the previous and current least squares fit lines
that are closest to the previous dominant point.

7) Choose the midpoint between these two closest points as the
latest approximating point.

Gaussian smoothing is suggested because the thinning
algorithm often produces thinned edge pixels having one
four-neighbor and one eight-neighbor (see figure 6).

We illustrate in figure 4 the maximum error of the
various algorithms for the digital closed 'chromosome'
curve used in figure 3.  Note that as the number of
approximating points increases, the maximum error for the
split and merge and the chord and arc length methods
converge.  Figure 5 illustrates the superior efficiency of the
chord and arc length approach over the split and merge

algorithm and its insensitivity to the number of
approximating points (i.e., ‘tightness’ of fit).

4 T h e  o b j e c t  b o u n d a r y  t o  o c c u p a n c y 
g r i d  a l g o r i t h m 

The OBOG algorithm we now describe is
significantly simpler to state and compute than the CGOB
algorithm.  This is not surprising, since object boundaries
are a more compact representation than certainty grids and
can be considered to be at a higher level in the hierarchy of
the intelligent system.  This is because object boundary
curves are beginning to organize space into connected lines
whereas certainty grids organize space into disconnected
points.  More work is required to discern this connectivity
of points into lines and then to make appropriate
approximation of those lines.  Input to the OBOG algorithm
are the object boundary curves which define spatial
occupancy.  Each of these curves is oriented so that as one
moves along the curve, occupied space is to the right.  For
each cell in the grid:
1) Find the point on the set of boundary curves that is closest to

the cell.  This will either be a vertex on the curve or a point
within a single line segment joining vertices.  If there are two
or more points on the curves that are at the same distance from
the cell, one can be picked randomly without error.

2) If the point on the curves closest to the cell is a point within a
line segment, compute the cross product of the vector from the
cell to the point and the vector of the (oriented) line segment.
If the sign of the cross product is positive, the cell is in
unoccupied space; if negative, the cell is in occupied space.

3) If the point (on the curves) closest to the cell is an endpoint of
two contiguous line segments, form the dot product of the
vectors formed by the two contiguous (oriented) line segments.

3a) If the sign of the dot product is positive, compute the cross
product of the vector from the cell to the endpoint and the
vector of either of the (oriented) line segments.  If the sign of
the cross product is positive, the cell is in unoccupied space; if
negative, the cell is in occupied space.

3b) If the dot product is less than or equal to zero, form two cross
products of the following pairs of vectors  a) the vector from
the cell to the endpoint and the vector of the first of the two
(oriented) line segments and b) the vector from the cell to the
endpoint and the vector of the second of the two (oriented) line
segments.

3c) If these cross products both have positive sign, the cell is in
unoccupied space.  If both have negative sign, the cell is in
occupied space.

3d) If these cross products have different signs, form the vector of
the sum of two unit vectors in the direction of the vectors
formed by the two line segments on the curve.  Compute the
cross product of the vector from the cell to the endpoint and
this sum vector.  The cell is in unoccupied space if this sign is
positive and is in occupied space otherwise.

5 S i m u l a t i o n  a n d  a p p l i c a t i o n 
For testing the CGOB algorithm, we used simulated

grid maps with added Gaussian blurring and speckle noise.
Figure 6 shows an example of such a noisy grid.  Note that
the final approximating line segments are superimposed.
Here we see that both open or closed curves can be detected
and that data reduction from the certainty grid to the
obstacle boundary points is by a factor of about 145 in this
example.  Figures 7 and 8 show the raw edge grid and the
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Figure 3: A Gaussian smoothed (window size = 5) digital closed
curve with fitting by chord and arc length with least squares



thinned edge grid.  Programming and testing was done in
Mathematica™ and 'C'.

For testing the OBOG algorithm, we used object
boundary maps like those in figures 9 and 10.  Note that the
initial line segments constituting the object boundaries are
superimposed over the resultant occupancy grid.
Programming and testing was done in Mathematica™.
Conversion to the ‘C’ language and implementation on a
mobile robot is in progress.

The initial application for these algorithms was to
maintain maps of an underground coal mine for a computer-
controlled mining machine [13].  The certainty grid is
particularly suitable for specifying the presence or absence
of coal.  Obstacle boundary curves are appropriate as a
global map because it is of equal resolution as the certainty
grid but requires much less storage space.

6 C o n c l u s i o n 
Some of the uses and advantages of having the

CGOB and OBOG algorithms in a real-time robotic system
are:
1) The simultaneous use and dynamic availability of two forms of

spatial occupancy representation, namely, certainty grids and
object boundary curves.

2) Certainty grids provide a fast response to some queries that
would take longer to get with object boundary curves (e.g., Is
there an object at (x,y)?).  The latter would have faster
response to other types of queries (What is the normal vector to
the boundary at (x,y)?).

3) Certainty grids require much more storage space than object
boundary curves.  This fact might suggest the former for local,
egocentric maps and the latter for global maps.  Using the
OBOG algorithm, the system can bring in sections of the
global map (as obstacle boundary curves) and convert them
into certainty grids, as needed.

4) Object boundary curves can be considered a 'higher level'
representation in an intelligent hierarchical system, since, for
example, it is easy to detect geometric shapes using object
boundary curves.

The most computationally expensive portions of the
CGOB algorithm are edge detection, thresholding, thinning,
and the generation of predecessors and successors.  These

portions are designed to be computed on image processing
hardware.  Similarly, the entire OBOG algorithm can be
computed using image processing hardware.  As we stated
in the introduction, the execution time of the CGOB
algorithm should be fast enough for a variety of real-time
mobility tasks.

More work is required in at least two areas.  1) We
need to execute the algorithms on image processing
hardware.  2) We suggest that the certainty grid be
maintained as a local map and a set of obstacle boundary
curves as a global map.  This requires that there be a way to
integrate a local obstacle boundary map into the global
obstacle boundary map.
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Figure 6: A noisy certainty grid with final
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Figure 7: The raw edge grid for noisy certainty grid of
figure 6.
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Figure 9: An example set of object boundary curves with the
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